Americas Operating Plant Service Information Systems I&C ## Main Control Room Annunciators ### **Background** Control Room Annunciators are an integral part of a nuclear plant's main control room that alert operations staff visually and audibly when an abnormal plant condition occurs. Annunciator systems in today's operating fleet are often original plant equipment facing mechanical fatigue (aging), component obsolescence, and limited flexibility to incorporate modern approaches to plant operations. Westinghouse offers an Ovation-based form, fit. function replacement annunciator system that can retain the spatial awareness and likeness of an existing system, minimizing impacts on operator training and alarm response procedures. A replacement annunciator system is offered with traditional lampboxes window faceplates or with large format computer displays that can reduce hardware I/O and offer an enhanced Operator interface. Operationally, the modern system can completely replicate the alarm management capabilities of an existing annunciator system with respect to alarm flashing/reflashing, acknowledgement, reset, and silence, and can be integrated with existing control board buttons. Alarm windows and lists are unified in the Ovation alarm viewer and can provide advanced capabilities such as alarm suppression, shelving, cutouts, and one-click access to alarm response procedures. Traditional, first-out, and permissive annunciator functionality is supported, as well as sequence-of-events recording. Audible annunciator indications can be provided though PC based workstations or by integration with an external alarm horn. ### **Description** The Westinghouse annunciator system replaces an existing standalone annunciator system with an Ovation Distributed Control System (DCS) based solution. The system can be standalone or integrated with a new or existing Ovation control or information system. The Ovation DCS infrastructure is comprised of a software developer/engineering workstation, operator workstations, historian, and cyber security system, with Ovation controllers and I/O to acquire the annunciator inputs and interface to the control board alarm management buttons. Legacy annunciator lampboxes can be replaced with an updated faceplate (windows) driven by Ovation digital outputs, or alternatively, by a "display wall" that mimics the look of lampboxes on large format computer displays that eliminate the need for digital output hardware and wiring. Each tile is replicated to be the same size, font size, and color as the current system. Each lampbox window requires inputs to the annunciator system that are typically from a dedicated hardware input card. When integrated with a new or existing Ovation control system, hardware inputs can be reduced if the annunciator input is already processed by the existing Ovation system. As control and information systems are added in the future, duplicate I/O can be removed and the native control systems points can be used as annunciator inputs. Example Standalone Annunciator System Architecture Ovation Control Builder logic is used to calculate the state of each annunciator window. With a software-based rather than hardware-based implementation, new points can be created and combined to develop the alarm signal and quickly evaluated and deployed. The annunciator system supports replication of traditional annunciator windows, on/off status windows, and first-out annunciator windows. Alarm management can use the hard pushbutton interface, the graphical user interface displays, or the Ovation base alarm system to acknowledge, reset, and silence alarms. Each lampbox is replicated via an Ovation display. Each display provides controls to silence and acknowledge the alarms on that display. The set of lampbox displays are continuously shown on the video display wall mounted on the top of the control board. If lampbox faceplates are used as an alternative to a display wall, graphic displays are still available within the system to be viewed on an Ovation operator workstation to allow soft alarm management and provide backup in the event of a failure of a dedicated display on the top of the control board. Annunciator Replacement in Westinghouse SNUPPS Simulator | ž. | | | | | | DHOME 1922 C | No BERLEVILLE | М енацияния | WPD 2 DARK ON | | | | | | - {- | |-----------------------------------|--------------------------------------|---|---------------------------------|------------------------------|------------------------------------|------------------------------------|-----------------------------------|--|--|--|---|---|--|--|----------------------| | 22/3U
14:55 | N/21
5:51 | | | 1 | -EI-CB-2 | 1M, 1-EI | -CB-21P | . & 1-EI | -CB-21A | | | | | | | | G | Н | | Α | В | С | D | E | F | G | Н | | Α | В | c | | | NC LOOP TA
LO FLOW
COME TIT | BC LOOP 1C
10 TANG
CHR. III | 1 | NSS SIL
EX TRIP
CHIL I | RES TR
EX TRIP
CONL T | RIS PR LOSP
EX TRIP
CINE I | NES PERIESP
RETEEP
CHR. T | NIS PE
NI B RATE
CHN, I | NIS IN-10*-10
TRIP PERM
P-4 CHR. I | NIS PR > 10%
TREP PERM
P-20 CHM. I | NIS FE > 30%
TELF PERM
P-8 COM: 1 | 1 | NES SR
LISSS DET
VOLTAGE | HES SR
HE III AT SO
HEIOCKED | SFEES AREA
SUMP HT/
HT-HT LEWIL | 800
UI
Fr | | BCP-SS
BIS TA
EW | | 2 | RIS SR
EX TRIP
CIM. 11 | RES IR
RX TRIP
CORE II | RIS PR LOSP
EX TRIP
CHR. II | HIS PE HISP
RX TRIP
CHM. II | NIS PE
81 # RATE
CHA. 11 | NIS IN-104-10
TRIP PERS
P-6 CHE, II | NIS PE > 10%
TREP PORM
P-30 CHAL II | NIS PE > 30%
TRIP PERM
P-8 CHMC 11 | 2 | HIS SR - 18
TRIP
HYPASSED | MIS SR
HI FLUX
AT SHUTKAN | RIS
CHARNEL
IN TEST | BCO
BCO
F | | IC LOOP 18
LO ILOW
CHIL III | BC LOOP 1C
LO-LO TANG
CHIL TIT | 3 | | | NIS PE 188P
BX DEEP
COM. 113 | HIS PEHESP
RX HEIP
CHR III | NIS PE
NI O RATE
COM. III | TRUP PORM | NIS PR > 10%
TELP PORM
P-10 CAME TIT | TRUE PORK | 3 | COME RECEBE
FARS TA, B, C
DAMPER CLOSED | | | WIR
HI | | BCP-SS
BBS 10
UV | BUS TA | 4 | | | MIS PR 100P
EX TELP
COM. IV | RES PR HESP
EX TREP
CHIL. TV | NIS PA.
NI B RATE
ONL IV | NIS IN) 104-10
TRIP PERM
P-6 CHR. IV | NIS PR > 10%
TREP PERM
P-10 CHAL IV | HIS PE > 30%
TREP PERM
P-8 CHR. TV | 1 | NES IR
LOSS OF DET
VOLTAGE | EMETRICIANE
SYSTEM
TRIGGERED | AMEA
AMENI AIR
TEMP NIGH | ONP
PI | | TO LITON
CHIEF TO | PEZE
SE LVL
CHRE 111 | 5 | SC 1007 TA
10 FLOW
CHR 1 | COME 1 | BC LEAF 1C
10 FLOW
CHML 1 | RCF LA
RCE OPEN
CHM, I | BC LOOP TA
LO TANG
CHALL | BC LOOP TA
LO-GO TANG
CRML I | PRZE
SELLYL
CHILL | PRZM PRESS
> 2000 PS1
CHML I | 5 | NIS IR CO I
LOSS OF
COMP VOLT | FIRST OF TE | MIS IN
HI FLUX
800 STOP | 1 | | BCP-SS
BUS 1C
UV | ROF-SS
RIS IR | 6 | SC 1007 SA
10 FLOW
ONL 11 | EC LOOP IN | SC LOOP 1C
10 FLOW
CHIL 11 | SCP 18
BER OPEN
CHAL II | BC LOOP IS
LO TANS
CHIL II | RC LOOP 18
LD-LO TANG
CHAL II | PRZR
RE LVL
CHRL 11 | PRZR PRESS
> 2000 PST
CHAL II | 6 | NES PR
LOSS OF BET
VOLTAGE | EARTRONASE
INSTRUMENT
PANEL
TROUBLE | FEEDWATER
GLIRASONIC
FLOW METER
TROUBLE | FEI
IILTI
FLOR | | BCF 1C
BEE CPUN
CHAL III | PEZE PEZS
> 2000 PSI
ONE, 111 | 7 | CHAT III | DOLLOW THE | EC LEGS TO
LO FLOW
CHAL III | RCF IC
BCR OPEN
CHAL III | DC LOOP TO
LO TANG
CHAL III | DE LOCP TO
LD-LO TAVE
CHAL III | PRZE
HE LVL
CHIE, III | PRZE PRESS
> 2000 PSI
CHAL III | 7 | MES PR NE
1-11-111-1V | NIS PR
CHIL AVE B
DEVEATION | FOR SET DEV | HZ I | | | BCP-SS
BUS 10
UF | 8 | BUS 1A
UV | 805-55
805-18
0V | BUS IC
UV | | | BCP-SS
BIS 1A
EF | 807-55
805-18
8F | 807-55
885-10
38 | | NIS PR NI
B LO SP CH
I-II-III-IV | NIS PR HI
O RATE CH
I-II-III-IV | NOS PE
LWE DET DEV
-DEF <50% | H ROI | | PANI | EL M | | | | | PANE | L P | | | | | | PANE | L A | | Annunciator Graphics for Integrated Display Wall Integrated Display Wall #### **Benefits** A Westinghouse Ovation-based annunciator solution provides the following specific benefits: - Minimizes operator training and plant procedure modification by replicating the fit, form, and function of legacy annunciator systems. - Integration of existing alarm response procedures. - Reduces hardware footprint and increases standardization by sharing I/O and data acquisition hardware between new or existing Ovation plant systems. Non-Ovation annunciator systems would require duplicate I/O. - Supports advanced alarm concepts like modal alarming, alarm grouping, and iconic alarming integrated with control graphics. - Provides process-based alarm list filtering by priority, system, or alarm type. - Integrates with Ovation Process Historian to provide electronic records of alarm history and sequence of events. - Lowers cost of operations, maintenance spare parts, and training by building on a common platform with other Ovation systems. - Future-proof foundation for plants planning for long term operations and transitioning to a modernized control room via systematic alarm reduction and soft annunciator replication that can be implemented with minimal hardware expense. #### **Experience** Installed at two units in the United States and the Westinghouse SNUPPS simulator, planned installations at six additional units. Ovation is a registered trademark of Emerson Process Management Westinghouse Electric Company 1000 Westinghouse Drive Cranberry Township, PA 16066 January 2022 / NA-0173